A more fundamental application of remote sensing is to augment conventional methods for geologic mapping of large areas. Regional maps present compositional, structural, and chronological information for reconstructing geologic evolution. Such reconstructions have important practical applications because the conditions under which rock units and other structural features are formed influence the occurrence of ore and petroleum deposits and affect the thickness and integrity of the geologic media in which the deposits are found.
Geologic maps incorporate a large, varied body of specific field and laboratory measurements, but the maps must be interpretative because field measurements are always limited by rock exposure, accessibility and labor resources. With remote-sensing techniques it is possible to obtain much geologic information more efficiently than it can be obtained on the ground. These techniques also facilitate overall interpretation. Since detailed geologic mapping is generally conducted in small areas, the continuity of regional features that have intermittent and variable expressions is often not recognized, but in the comprehensive views of Landsat images these continuities are apparent. However, some critical information cannot be obtained through remote sensing, and several characteristics of the Landsat MSS impose limitations on the acquisition of diagnostic data. Some of these limitations can be overcome by designing satellite systems specifically for geologic purposes; but, to be most effective, remote-sensing data must still be combined with data from field surveys and laboratory tests, the techniques of the earlier twentieth century.
【gre考试阅读真题解析(B)】相关文章:
最新
2016-03-01
2016-03-01
2016-03-01
2016-03-01
2016-03-01
2016-03-01