Many state-of-the-art computer-vision systems work along similar lines.
许多尖端计算机视觉模拟系统都采用类似的原理运行。
The uniqueness of ConvNets lies in where they get their filters.
卷积神经网络的独特之处在于它们的滤光器已经做得登峰造极。
Traditionally, these were simply plugged in one by one, in a laborious manual process thatrequired an expert human eye to tell the machine what features to look for, in future, at eachlevel.
以往,滤光器只是一个接一个地接通。这一过程由手工完成,极为繁琐,需要一名专家全程用肉眼观察,然后向机器下达指令,告诉它下一步检索什么样的特征。
That made systems which relied on them good at spotting narrow classes of objects but ineptat discerning anything else.
于是,依靠手动操作滤光器的计算机视觉系统,可以识别的物体类别十分有限,而无法分辨其他更多的东西。
Dr LeCun s artificial visual cortex, by contrast, lights on the appropriate filtersautomatically as it is taught to distinguish the different types of object.
相比之下,勒存博士的人工视觉皮层,可以在按照设定程序识别不同类型的物体时,自动接通相应的滤光器。
【2015考研英语阅读计算机模拟视觉】相关文章:
★ 2013年6月英语六级考试备考深度阅读试题模拟与解析(19)
最新
2016-10-18
2016-10-11
2016-10-11
2016-10-08
2016-09-30
2016-09-30