When an image is fed into the unprimed system and processed, the chances are it will not, atfirst, be assigned to the right category.
把一张图像输入他的系统进行处理,如果这个系统没有预先存储任何资料,第一次使用时体统有可能会把这张图像错误归类。
But, shown the correct answer, the system can work its way back, modifying its ownparameters so that the next time it sees a similar image it will respond appropriately.
但是,告诉它正确答案之后,系统将重新识别图像,并修改自身的参数,以便下一次再看到类似的图像,可以做出恰当的回应。
After enough trial runs, typically 10,000 or more, it makes a decent fist of recognising thatclass of objects in unlabelled images.
经过足够的试运行之后通常需要进行1万次以上要在未经标示的图像上识别那一类物体,卷积神经网络可以完成得相当出色。
This still requires human input, though.
然而,这个阶段还是需要人类对其进行信息输入。
The next stage is unsupervised learning, in which instruction is entirely absent.
下一个阶段为无监督学习,在这个过程中没有任何人的指导。
Instead, the system is shown lots of pictures without being told what they depict.
【2015考研英语阅读计算机模拟视觉】相关文章:
★ 2013年6月英语六级考试备考深度阅读试题模拟与解析(3)
最新
2016-10-18
2016-10-11
2016-10-11
2016-10-08
2016-09-30
2016-09-30