It has long been known that during an El Nino, two conditions exist: unusually warm water extends along the eastern Pacific and winds blow from the west into the warmer air rising over the warm water in the east.The contribution of the model is to show that the winds of an El Nino, which raise sea level in the east, send a signal to the west lowering sea level at the same time.According to the model, that signal is created as a negative () Rossby wave, a wave of lower sea level, that moves westward parallel to the equator at 25 to 85 kilometers per day.Taking months to move across the Pacific, Rossby waves march to the western boundary of the Pacific basin, which is modeled as a smootli wall but in reality consists of quite irregular island chains.
When the waves meet the western boundary, they are reflected, and the model predicts that Rossby waves will be broken into many coastal Kelvin waves carrying the same negative sea-level signal.These eventually shoot toward the equator, and then head eastward along the equator drove by the earth at a.speed of about.250 kilometers per day.When enough Kelvin waves of adequate amplitude () arrive from the western Pacific, their negative sea-level signal overcomes the feedback mechanism, raising the sea level, and they begin to drive the system into the opposite cold mode.This produces a gradual change in winds, one that will eventually send positive sea-level Rossby waves westward, waves that will eventually return as cold cycle—ending positive Kelvin waves beginning another warming cycle.
【2017届北京市高考英语一轮复习综合练习:44 (含解析)】相关文章:
★ 2017届高考英语二轮复习大题冲关秘籍语法填空:创新押题(含解析)
最新
2017-04-24
2017-04-24
2017-04-24
2017-04-24
2017-04-21
2017-04-21