But this evolutionary mechanism combining dissymmetry, anatomy, and chance does not provide an adequate explanation of why right-handedness should have become predominant. It does not explain, for example, why the infrequent unions between snails of opposing hands produce fewer offspring of the rarer than the commoner form in species where each parent contributes equally to handedness. Nor does it explain why, in a species where one parent determines handedness, a brood is not exclusively right- or left-handed when the offspring would have the same genetic predisposition. In the European pond snail Lymnaea peregra, a predominantly dextral species whose handedness is maternally determined, a brood might be expected to be exclusively right or left-handedand this often occurs. However, some broods possess a few snails of the opposing hand, and in predominantly sinistral broods, the incidence of dextrality is surprisingly high.
Here, the evolutionary theory must defer to a theory based on an explicit developmental mechanism that can favor either right or left-handedness. In the case of Lymnaea peregra, studies indicate that a dextral gene is expressed during egg formation; i.e., before egg fertilization, the gene produces a protein, found in the cytoplasm of the egg, that controls the pattern of cell division and thus handedness. In experiments, an injection of cytoplasm from dextral eggs changes the pattern of sinistral eggs, but an injection from sinistral eggs does not influence dextral eggs. One explanation for the differing effects is that all Lymnaea peregra eggs begin left-handed but most switch to being right-handed. Thus, the path to a solution to the puzzle of handedness in all snails appears to be as twisted as the helix itself.
【gre考试阅读真题解析(A)】相关文章:
最新
2016-03-01
2016-03-01
2016-03-01
2016-03-01
2016-03-01
2016-03-01