加州理工101是进行视觉研究常规使用的数据库,它存储了约1万幅标准化图像,描述101类和标准化图像复杂程度相当的物体形状,包括脸、汽车和手表等。
When a ConvNet with unsupervised pre-training is shown the images from this database itcan learn to recognise the categories more than 70% of the time.
当给事先经过无人监督训练的卷积神经网络展示这个数据库中的图像时,它可以通过学习辨认图像的类别,成功几率超过70%。
This is just below what top-scoring hand-engineered systems are capable ofand thosetend to be much slower.
而最先进的手动视觉系统可以做到的也只比这个高一点点并且它们的辨认速度往往慢得多。
This approach which Geoffrey Hinton of the University of Toronto, a doyen of the field, hasdubbed deep learning need not be confined to computer-vision.
勒存的方法多伦多大学的杰弗里?希尔顿是该领域的泰斗,他将这一方法命名为深度学习不一定局限于计算机视觉领域。
In theory, it ought to work for any hierarchical system:language processing, for example.
理论上,该方法还可以用在任何等级系统当中,譬如语言处理。
In that case individual sounds would be low-level features akin to edges, whereas themeanings of conversations would correspond to elaborate scenes.
【2015考研英语阅读计算机模拟视觉】相关文章:
★ 2013年6月英语六级考试备考深度阅读试题模拟与解析(3)
最新
2016-10-18
2016-10-11
2016-10-11
2016-10-08
2016-09-30
2016-09-30