不幸的是这种方法很慢,还很麻烦,所以佛罗里达人类与机器认知研究所一直在研究新的自动处理方法,完全替代操作人员。
Indeed, the IHMC notes that the human-operated approach was one of the reasons why the Atlas robot it programmed fell during The Defense Advanced Research Projects Agency’s (DARPA) Robotics Challenge in 2017.
其实佛罗里达人类与机器认知研究所说人类操作是导致了他们编程的Atlas在参加2017年美国国防高级研究计划局的机器人挑战赛中摔倒的原因之一。
To circumvent human error, the new system lets an operator select the desired location, but ultimately relies on an algorithm to figure out how to get the robot there and avoid obstacles.
为了避免人类的失误,这个新系统让操作员选择预定位置,但最终依靠的是一种算法想办法让机器人到达指定地点并避开障碍物。
While the new method works almost flawlessly in flat environments, it still has lots of progress to made when it comes to narrow and rough terrains. “Currently, narrow terrain has a success rate of about 50 percent, rough terrain is about 90 percent, whereas flat ground is near 100 percent,” the IHMC notes.
虽然这种新方法在平地上走没问题了,但走狭窄通道和凹凸地面仍有待改进。佛罗里达人类与机器认知研究所说:“目前狭窄通道行走成功率约为50%,凹凸地面约为90%,而平地接近100%。”
【人形机器人又有重大突破,多谢IHMC】相关文章:
最新
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15