在伯格公司,我们只针对一个组织样本就建立了超过14万亿个数据点。无论是使用人力,还是使用传统的推理假设模型,要想从所有这些数据中摘取有价值的信息,都是不可能的。所以当我们构建我们所称的疑问型生物平台时,我们使用了人工智能来分析所有数据。人工智能可以从病人的生物数据、临床样本和人口统计资料中摘取所有的信息,并且可以根据类似性和差异性进行分类和分层,从而帮助我们了解健康细胞和病变细胞之间的差异。
Fourteen trillion data points sounds like information overload.
14万亿个数据点听起来有点超负荷的感觉。
NN: So there are two components: the upfront biological and there is something called omics. We go much deeper than just analyzing the genome, we look at all the genes in that tissue sample, all the proteins, metabolites, lipids, patients records, demographics, age, sex, gender, etc. We combine the 30,000 genes in the body with about 60,000 proteins and a few hundred lipids, metabolites. Then we take those components and subject them to high order mathematic algorithm that essentially learns, uses machine learning, to learn the various associations and correlations.
尼文·纳雷因:所以它有两个组成部分:首先是生物信息,然后还有所谓的"组学"。我们不仅仅是分析基因组,而是研究一个组织样本的所有基因、蛋白质、代谢分子、脂质、病历记录、人口统计学资料、年龄、性别等等信息。我们把人体的3万个基因与6万种蛋白蛋和几千种脂质、代谢分子的信息综合起来,然后把这些成分用具有机器学习功能的高阶数学算法进行计算,以了解它们的各种关联性和相关性。
【人类能否在两三年内治愈癌症】相关文章:
★ 爱能化解一切辛劳
最新
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15