1.2若随机变量X服从一个数学期望为、标准方差为 的高斯分布,记为:X∽ N,则其概率密度函数为:
正态分布的均值a决定了其位置,其标准差决定了分布的幅度。曲线关于x=a的虚线对称, 决定了曲线的胖瘦,因其曲线呈钟形,因此人们又经常称之为钟形曲线,如图所示:
1.3高斯型随机变量的概率分布函数,是将其密度函数取积分,即其中,
表示随机变量A的取值小于等于x的概率。如A的取值小于等于均值a的概率是50%。其曲线如图所示:
1.4通常所说的标准正态分布是 = 0, = 1的正态分布,即令图1中的曲线a=0, , 就得到了标准正态分布,曲线如图。
对于一般的正态分布,可以通过变换,归一化到标准的正态分布,算法为:
设原正态分布的期望为a,标准方差为 ,欲求分布在区间的概率,可以变换为求图3中分布在间的概率。其中x与y的对应关系如下: 分页标题#e#
例如,若一正态分布a=9, , 区间为,则区间归一化后得到,即通过这种归一化方法就可以用标准正态分布的方法判断结果。
2. 本次考试中正态分布题的解法:
有一射击队,人数600人,对其射击结果打分,结果服从正态分布,得到算数平均分为84分,标准方差为5,假定分数大于90分的概率为k%; 另一射击队,人数400人,对其射击结果打分,结果服从正态分布,得到算数平均分为80分,标准方差为3,假定分数大于86分的概率为n%; 问k和n谁大?
【新gre数学考试北京交大回忆:正态分布】相关文章:
最新
2016-03-02
2016-03-02
2016-03-02
2016-03-02
2016-03-02
2016-03-02