现在,150年过去了,物理学家早就抛弃了以太介质理论和球棍原子模型。但是数学家却创造了一个被称为“扭结理论”的分支学科,来描述绳结的一些数学特性。数学中对于绳结的定义是一个线绳自己缠绕且两端需要捻合起来,保证绳结无法被解开。根据这一定义,数学家将绳结分为了不同的种类。比如说,当一条线绳自己缠绕三次后,只能形成一种绳结,被称为三叶结。同样,缠绕四次也只能形成一种绳结,叫做八字结。数学家证明出了被称为“琼斯多项式”的一系列公式用以定义每一种绳结。一直以来,扭结理论在数学领域仍然是某种充满奥秘的分支学科。
In 2007, physicist Douglas Smith and his then-undergraduate student Dorian Raymer decided to look at the applicability of knot theory to real strings. In an experiment, they placed a string into a box and then tumbled it around for 10 seconds. Raymer repeated this about 3,000 times with strings of different lengths and stiffness, boxes of different size, and varying rotation rates for the tumbling.
2007年,物理学家Douglas Smith和他当时的本科同学Dorian Raymer决定将扭结理论应用到真实的线绳中去。在一次使用中,他们在盒子里放置一条线绳并摇晃10分钟。Raymer以不同长度和不同软硬度的的绳子、不同尺寸的盒子、以及不同的摇晃频率重复了三千次。
【为什你的耳机总是缠绕打结】相关文章:
最新
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15