"There is still a lot of work to be done before this approach might be used in the clinic, but we're hopeful that it will pave the way for new kinds of treatment for patients with sickle cell disease," Corn said.
Sickle cell anemia is a blood disorder caused by a single mutation in both copies of a gene coding for beta-globin, a protein that forms part of the oxygen-carrying molecule hemoglobin.
This homozygous defect causes hemoglobin molecules to stick together, deforming red blood cells into a characteristic "sickle" shape. These misshapen cells get stuck in blood vessels, causing blockages, anemia, pain, organ failure and early death.
The disease is particularly prevalent in African Americans and the sub-Saharan African population, affecting hundreds of thousands of people worldwide.
The researchers also noted that the approach might also able used to develop treatments for other blood diseases, severe combined immunodeficiency, chronic granulomatous disease, rare disorders like Wiskott-Aldrich syndrome and Fanconi anemia, and even HIV infection.
"Sickle cell disease is just one of many blood disorders caused by a single mutation in the genome," Corn said. "It's very possible that other researchers and clinicians could use this type of gene editing to explore ways to cure a large number of diseases."
【国际英语资讯:Gene editing offers hope for curing sickle cell anemia】相关文章:
★ 卡尼面临的挑战
最新
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15
2020-09-15